Algorithms and programming
Algorithm

· guide / recipe / instructions for solving a problem / task
· finite set of well-defined instructions for accomplishing some task which, given an initial state, will terminate in a corresponding recognizable end-state (http://en.wikipedia.org/wiki/Algorithm)
· for example:
· recipe for cooking a chicken soup
· instructions for constructing a triangle in geometry
· instructions for multiplying two numbers with multiple digits
· each algorithm is written in a specific language and only the one who understands the language can understand the instructions
· grandma understands the algorithm of knitting a sweater, but she may not understand the instructions of object constructions in geometry
· individual steps in an algorithm are also called commands
· the more complex commands are called control or command statements, for example:

· if you are baking the cake for children, do not use rum (conditional statement / logical if statement)

· knead the dough until it is smooth (repeating algorithm with a condition)
· while you have the dough, keep making buns (repeating algorithm with a condition)

· stitch this ornament six times (repeating algorithm with exact number of repetitions)

· algorithms can be written in formal and informal way (see the example later on)

· to represent the algorithm in a graphical way we use flowcharts (see the example later on)
The phases of program development in software engineering

1. analysis of the problem

2. proposal of a solution – algorithm design

3. realization – transcription of the algorithm into a programming language

4. maintenance of the program – updating, debugging etc.

Steps in creating your programming project

1. Investigate

· analysis of the problem

· What are the assumptions in which we will be solving the problem? Define all of the known prerequisites.
· What are the known data? Define all of the known input data.
· What is the solution of the problem – when is the task carried out? Define when we can say that the problem is solved.
· rephrasing of the assignment question into a more concrete version which includes answers to all three questions above
· understanding and description of the task the program should do
· investigating a suitable solution

· investigating the programming language in which the project should be implemented

· investigating flowcharts, data flow diagrams and other tools for completing your project

2. Plan

· solution proposal – writing the algorithm

· include a flowchart to accompany the algorithm design

· proposal of a design for the interface (a scheme of the interface design)

· include a data flow chart to accompany the interface design

· plan a time table for your work on the project (create a Gantt chart)
3. Create a product

· implement your algorithm in a specific programming language

4. Evaluate

· create a testing plan

· test the project yourself and fill out the testing report

· let another user test your project and let him fill out the testing report

· evaluate the results of the testing

· evaluate your choice of algorithm as a solution to the problem

· steps 1,2 and 4 should be written in your process journal
· step 3 (the program itself) will be submitted with your process journal

· you will be presenting your solution and your program in class

Example

Problem:

Your class is going for a school trip. The class teacher presents you two possible choices of a hotel, both of them of the same quality, but with different prices. You want to make a decision on which hotel is cheaper. You know that you also have to take into account the cost of the transfer. As you will be making such a decision more often, you decide to write a program which will decide for you depending on the input information.

Task:

Write a program using programming language Delphi that will decide which hotel is cheaper.

1. Investigate
· Problem analysis:
· Assumptions / prerequisites:

We should compare two hotels if we know that both hotels are of the same quality, we will be paying for accommodation and food and we will be traveling by bus, which will be paid according to the distance.

· Input data:

1. Cost of the food and accommodation for one student per night in hotel1 and hotel2

2. Cost of the transfer to hotel1 and hotel2

3. Number of days the school trip will last

· Solution:

Using the input data program calculates the cost of the whole trip for one student in both hotels. Then it compares the two costs and outputs a message which trip is cheaper. If both are of the same price, the program outputs this information.

2. Plan
· Solution proposal:

· Example of the informal algorithm:

1. Find out the cost of the accommodation and food for one student per day in the first hotel and record it as Cost1
2. Find out the cost of transportation to the first hotel and record it as Trans1
3. Find out the cost of the accommodation and food for one student per day in the second hotel and record it as Cost2
4. Find out the cost of transportation to the second hotel and record it as Trans2
5. Find out the duration of the trip and record it as NoDays
6. Calculate the cost of the stay in the first hotel by multiplying Cost1 and NoDays and record it as Hotel1
7. Calculate the whole cost of the first trip for one student by adding Trans1 to Hotel1 and record it as Trip1
8. Calculate the cost of the stay in the second hotel by multiplying Cost2 and NoDays and record it as Hotel2
9. Calculate the whole cost for one student by adding Trans2 to Hotel2 and record it as Trip2
10. If Trip1 < Trip2 then write message “First hotel is cheaper”

11. If Trip1 > Trip2 then write message “Second hotel is cheaper”

12. If Trip1 = Trip2 then write message “Both hotels cost the same”
· Example of the formal algorithm in object oriented programming language (eg. Delphi):

1. Cost1 ← Edit1
2. Trans1 ← Edit2
3. Cost2 ← Edit3
4. Trans2 ← Edit4
5. NoDays ← Edit5
6. Hotel1 ← Cost1 * NoDays
7. Trip1 ← Hotel1 + Trans1
8. Hotel2 ← Cost2 * NoDays
9. Trip2 ← Hotel2 + Trans2
10. If Trip1 < Trip2 then write “First hotel is cheaper”

11. If Trip1 > Trip2 then write “Second hotel is cheaper”

12. If Trip1 = Trip2 then write “Both hotels cost the same”

· Example of the formal algorithm in linear programming language (eg. Pascal):

1. write “input the cost of the first hotel”
2. read Cost1
3. write “input the cost of the transportation to the first hotel”

4. read Trans1
5. write “input the cost of the second hotel”

6. read Cost2
7. write “input the cost of the transportation to the second hotel”

8. read Trans2
9. write “input the duration of the trip”

10. read NoDays
11. Hotel1 ← Cost1 * NoDays
12. Trip1 ← Hotel1 + Trans1
13. Hotel2 ← Cost2 * NoDays
14. Trip2 ← Hotel2 + Trans2
15. If Trip1 < Trip2 then write message “First hotel is cheaper”

16. If Trip1 > Trip2 then write message “Second hotel is cheaper”

17. If Trip1 = Trip2 then write message “Both hotels cost the same”
· Example of a flow chart:

[image: image1.png]L

read costl, tram1, Cosi2, tram2, noDays

Wotell < Cost1 * NoDays
Tripl < Hotell + Tram1
Hotel2 < Cost2 * NoDaye
Trip2 < Hotel2 + Tram2

irite "Both RoteTare of
the same price *

#1

· Interface design:

· Interface design example:

[image: image2.png]I]

costortme fimthome []

e

o it ot

costortheseconthoter [

costof ihe frarsfer

Dinesccommier]

number of days:
aves 1 > T edit boxes

wuteon [0k]

· Data flow diagram example:

[image: image3.png]Data input:

Gakulation and comparisar

Tram1 Tram2

costl NoDays costz NoDays

Tripl > Tripz Tripl < Tripz

Tripl = Tripz

Final resutiz

· Gantt chart example:

	Task
	No. of days
	Starting date
	Finishing date
	Jan 1st
	Jan 8th
	Jan 15th
	Jan 23rd
	Jan 30th
	Feb 6th

	Problem analysis
	1
	Jan 1st
	Jan 2nd
	
	
	
	
	
	

	Investigation
	7
	Jan 1st
	Jan 7th
	
	
	
	
	
	

	Algorithm design – informal
	2
	Jan 3rd
	Jan 5th
	
	
	
	
	
	

	Algorithm design – formal
	2
	Jan 6th
	Jan 7th
	
	
	
	
	
	

	Flow chart
	2
	Jan 8th
	Jan 10th
	
	
	
	
	
	

	Interface design
	3
	Jan 11th
	Jan 14th
	
	
	
	
	
	

	Data-flow diagram
	4
	Jan 13th
	Jan 17th
	
	
	
	
	
	

	Implementation in Delphi
	16
	Jan 15th
	Jan 31st
	
	
	
	
	
	

	Writing the testing plan
	2
	Jan 29th
	Jan 31st
	
	
	
	
	
	

	Testing
	10
	Jan 30th
	Feb 8th
	
	
	
	
	
	

	Evaluation
	5
	Feb 8th
	Feb 12th
	
	
	
	
	
	

3. Create a product
· Example of an implementation in Delphi:

procedure TForm1.Button1Click(Sender: TObject);

//not the best implementation, but still
begin

//better than putting all of the code into
 memo1.lines.add(ChooseHotel);

//one button click or having only a call
end;

//to a procedure in button click and

//everything else in the procedure
function TForm1.chooseHotel:string;

var cost1,trans1,cost2,trans2,noDays:integer;

 hotel1,hotel2,trip1,trip2:integer;

begin

 cost1:=strToInt(Edit1.text);

 trans1:=strToInt(Edit2.text);

 cost2:=strToInt(Edit3.text);

 trans2:=strToInt(Edit4.text);

 noDays:=strToInt(Edit5.text);

 hotel1:=cost1 * noDays;

 trip1:=hotel1 + trans1;

 hotel2:=cost2 * noDays;

 trip2:=hotel2 + trans2;

 if trip1 < trip2 then result:='First hotel is cheaper'

 else if trip1 > trip2 then result:='Second hotel is cheaper'

 else result:='Both hotels cost the same'

end;
· Example of a better implementation in Delphi:

procedure TForm1.Button1Click(Sender: TObject);

//better implementation with less variables
var cost1,trans1,cost2,trans2,noDays:integer;

begin

 cost1:=strToInt(Edit1.text);

 trans1:=strToInt(Edit2.text);

 cost2:=strToInt(Edit3.text);

 trans2:=strToInt(Edit4.text);

 noDays:=strToInt(Edit5.text);

 memo1.lines.add(ChooseHotel(cost1,trans1,cost2,trans2,noDays));

end;

function TForm1.chooseHotel(c1,t1,c2,t2,nd:integer):string;
//function has input variables sent from
var trip1,trip2:integer;

//button click – this is a more universal
begin

// solution
 trip1:=(c1 * nd) + t1;

 trip2:=(c2 * nd) + t2;

 if trip1 < trip2 then result:='First hotel is cheaper'

 else if trip1 > trip2 then result:='Second hotel is cheaper'

 else result:='Both hotels cost the same'

end;
//there are many other possibilities of implementation of this program, many of them even more complex and

//better than these two, it all depends on the ability of the programmer

//while programming your project try using as little variables as possible and try to make your code structured

//into procedures and functions and to make it as universal as you can
4. Evaluate
· Example of a testing plan:

	Specific Aspect Tested
	Inputs
	Expected result
	True result

	Get cost1 ← Edit1
	120
	Stored in cost1
	

	… for all input variables
	
	
	

	Calculate trip1
	cost1, trans1, noDays
	{Expected number according to inputs stated above}
	

	Calculate trip2
	cost2, trans2, noDays
	{Expected number according to inputs stated above}
	

	Compare trip1 and trip2
	trip1, trip2
	trip1 is <,> or = trip2 {depends on the inputs stated above}
	

	…repeat for different inputs until you try all possibilities
	
	
	

